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Abstract—Model predictive control is a widely used approach
to the problem of highway local ramp metering problem. The
main parameter that affects the computational complexity is the
prediction horizon. Considering the performance sensitivity to the
prediction horizon length, this paper proposes a reinforcement
learning (RL) based adaptive horizon model predictive control
(AHMPC). In the RL-AHMPC, the prediction horizon is adjusted
based on an RL agent according to the system states. The
RL agent learns the adaptive horizon policy by continuously
interacting with the environment. Meanwhile, an effective MPC
controller is designed to handle the constraints and objectives
in the ramp metering problem, and provide optimal control
sequences. Simulation results show that the novel RL-AHMPC
method can improve traffic efficiency and keep the computational
cost at a low level. This is due to the combination of the optimal
control sequences from the MPC controller and the intelligent
adaptive horizon generated by the RL agent.

Index Terms—active traffic control, data-driven control,
learning-based control, reinforcement learning

I. INTRODUCTION

In recent years, there has been a significant escalation in the
demand for transport mobility, with beneficial implications for
societal progress, but also with many adverse consequences
for drivers and traffic controllers. The academic and indus-
trial communities have extensively investigated traffic control
methodologies with the aim of improving traffic safety and
efficiency. While the field of traffic control encompasses both
urban and highway networks, this paper focuses specifically
on highway traffic flow control.

To achieve safety and efficiency goals, the highway traffic
control problem is constructed as an optimization model, and
the optimal strategies are obtained by solving the model.
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The model-based optimal control method, MPC, has been
widely applied to the highway traffic flow control optimization
problem [1]. Meanwhile, the learning-based optimal control
method, RL, is a recent technique that has shown its success
and potential in the field of control, including highway traffic
control [2]. Both MPC and RL methods have their advan-
tages and disadvantages when dealing with optimal control
problems. The MPC method requires a significant amount of
computational resources during real-time control. Conversely,
the RL method has an innate ability to handle complicated
challenges with minimal online computational overhead. Nev-
ertheless, the process of training a proficient RL agent is
typically time consuming, especially for complex systems.

Addressing the above challenges in MPC and RL methods
for highway traffic flow control, this paper proposed an
RL-based MPC method. In the proposed method, MPC is
responsible for handling complex constraints and objectives.
While, RL is responsible for outputting dynamic prediction
horizons. Thanks to the optimized prediction horizons, the
MPC controller can complete the entire control cycle task with
lower computational costs.

A. Related Work

This section gives an overview of related work that applies
MPC, RL, and MPC with RL methods to solve highway traffic
flow control problems.

MPC is a widely recognised method for real-time control
of dynamic systems. It works by predicting system states over
a finite time horizon and optimising an appropriate objective
function. This is achieved by iteratively solving a Finite-
Horizon Optimal Control Problem that is updated with real-
time system states. Groot et al. [3] used MPC to solve a high-
way traffic flow control optimization problem integrated the
METANET model. A piecewise-affine (PWA) approximation
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of the nonlinear METANET model was proposed to facilitate
real-time implementation. Paula et al. [4] applied MPC to
highway traffic networks, where the goal was reducing the
time spent by the drivers through a dynamic setting of variable
speed limit (VSL) and ramp metering (RM). Todorovic et
al. [5] proposed a distributed MPC algorithm to coordinated
control of discrete VSLs and continuous RM. The proposed
algorithm used a distributed control architecture and an al-
ternating optimization scheme to balance the computational
complexity and system performance.

RL-based Al has made remarkable progress in outperform-
ing top human professionals in complex multiplayer games.
These achievements are a powerful demonstration of the im-
mense potential of RL methods. Taking traffic flow simulations
as training environments, Wang et al. [6] introduced actor-
critic-based RL methods to learn actions, with the reward
function taking into account the waiting time, average speed
and on-ramp queuing limit. Zheng et al. [7] introduced a
multi-agent RL-based VSL approach to enhance collaboration
among VSL controllers. The proposed approach used cen-
tralised training with a decentralised execution structure to
achieve a joint optimal solution for a set of VSL controllers.
To improve the traffic safety and efficiency of freeway tunnels,
Jin et al. [8] proposed a novel VSL control strategy based on
the RL framework. The VSL control agent was trained using
a deep dyna-Q method.

Combining RL and MPC can fully leverage the advan-
tages of model-based and learning-based strategies in control
problems. Chen et al. [9] proposed a stochastic MPC method
based on RL for energy management of plug-in hybrid electric
vehicles. The RL controller was embedded into the stochastic
MPC controller to determine the optimal strategy at each
step. Flessner et al. [10] utilized RL to determine the trig-
gering mechanism of the MPC controller, thereby balancing
computational complexity and control effectiveness. Bghn et
al. [11] proposed to learn the optimal prediction horizon as
a function of the state using RL. The results showed that
clear improvements over the fixed horizon MPC scheme with
less training time. There have been a few studies on this
topic and the application of RL-MPC methods in the field
of highway traffic control. Airaldi et al. [12] used RL to
adjust the parameterisation of the MPC based on observed
data, improving the accuracy of the METANET model to
improve the closed-loop performance. Sun et al. [13] proposed
a hierarchical structure combining RL and MPC, in which a
high-level MPC component provided a baseline control input,
while a low-level RL component modified the output generated
by MPC.

B. Proposed Approach and Contributions

The method of combining MPC and RL for the problem
of motorway traffic control has been studied by only a few
researchers. The contribution of this paper is to propose an
RL-based AHMPC (RL-AHMPC) for the highway local ramp
metering, as shown in Fig. 1, in order to incorporate the
advantages of both MPC and RL methods. In particular, an

efficient MPC controller is designed to handle the constraints
and objectives in the ramp metering problem, and provide opti-
mal control sequences. Meanwhile, an RL agent in the control
structure of AHMPC provides an optimal prediction horizon
to balance the computational cost and control effectiveness.

Adaptive horizon model

predictive control
A
RL agent prediction
horizon
Policy
A
policy action
update
Reinforcement
learning
algorithm
A
state Plant .

Fig. 1: The framework of RL-AHMPC

The structure of this paper is as follows: Section II presents
the METANET model and the associated MPC algorithm
for the local ramp metering problem. Section III discusses
the details of the novel RL-AHMPC method. Section IV
gives numerical case studies implementing the proposed RL-
AHMPC method on a highway section. Finally, Section V
concludes this paper and suggests topics for future work.

II. PROBLEM FORMULATION
A. Defnition of Symbols
For a better understanding of this paper, we defne the
necessary notations and parameters in Table 1.
B. METANET modelling

We adopt the macroscopic second-order METANET frame-
work to formulate a discrete-time dynamical representation of
the highway traffic under local ramp metering [14]. For the
METANET framework, each segment ¢, ¢ € I,;;, at discrete
time ¢t = k7T is characterized by three state variables p;(k),
v;(k) and ¢;(k). These traffic variables can be calculated by
the following equations:

T
pilk +1) = pi(k) + E(Qz‘—ﬂk) —qi(k) +ri(k)) (D)
(k) = Aipi(k)vi(k) 2

ulk +1) = k) + - (V(pilh)) — wi(R)

+ 2_%(%)(%71“;) —vi(k))

L;
VT pia(k) = pilk) 3)
TL;  pi(k) + 5

pT v .
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TABLE I: Notations and parameters

Index Description

7 Index of segment

k Index of time step

ke Index of control time step

Parameters Description

T Length of time step

L; Length of segemnt ¢

i Number of lanes in segment %

T, Uy Ky [y QU Parameters of METANET

Vfree Free speed

Perit Critical density

C; Capacity of on-ramp connected to segment %

Pmaz Maximum traffic density

Wmax Maximum limit value for the queue length of on-
ramp

0 Parameters characterizing the adaptive horizon pol-
icy

E Total number of training episode

K Total time step of each episodes

) Learning rate representing the impact of new infor-
mation on the Q-values

0 Discount factor that balances immediate rewards
with future rewards

State variables Description

pi(k) Traffic density in segment % at time kT’

v; (k) Mean speed of the vehicles included in segment 7 at
time kT

qi (k) Traffic flow leaving segment % during the time step
kT, (E+1)T)

w; (k) Queue length of on-ramp connected to segment ¢ at
time kKT

d; (k) Demand flow of on-ramp connected to segment ¢ at
time kT

ay Updated horizon at time step k, action in the RL
algorithm

Uopt Optimal control sequence obtained by solving the
optimization problem in the MPC framework

T Reward in the RL algorithm

Sk State in the RL algorithm

Q(8k,ax) Q-value of taking action ay, at state 8

Decision variables | Description

w;(k) Metering rate of on-ramp connected to segment 7 at
time kT’

ri(k) Incoming flow generated by the on-ramp connected
to segment ¢ at time k7'

Py Prediction horizon at control time step k.

V(pi(k)) = v exp(— = (21 ya

& Perit

“4)

Let I,, denotes the set of segments with on-ramp connections.
If the segment is connected with a ramp, i.e. i € Iy, r;(k) can
be calculated based on the relation between the queue length
w; (k), capacity of on-ramp C; and traffic density p;; if none
is connected, i.e. i ¢ I, p; is equal to zero, which can be
described as:
u; (k) min{d; (k) + 8 C;, €;(Gmaxzri®yy

i € Ion
0, i ¢ Ion

5)

where, u;(k) € [0, 1], which is regarded as the control action.
Queue length w; can be calculated as:

wi(k +1) = wi(k) +T(di(k) —ri(k)),i € lon ~ (6)

C. MPC formulation

In MPC, optimal control actions are implemented repeatedly
in a rolling horizon manner. Let M relates the control time step
k. and simulation time step k as k = Mk,.. At each control
time step k., an optimal control problem is solved based on
the measured states at step k. over a Pj. prediction horizon,
and a set of optimal control sequences can be obtained. Then,
only the first control action of the optimal control sequence is
applied to the system. At the next control time step k. + 1, the
optimal control problem is solved again based on the newly
updated system states at step k. + 1, and also only the first
control action is applied to the system, and repeat. Specially,
the prediction horizon Pj. can be changed dynamically based
on the updated states.

Traditionally, the objectives of local ramp metering are
to minimize the total travel time, the penalty cost about
the variability of control actions, and the penalty factor for
queuing over the limit, which can be described respectively
as:

Ly(zy) =T Y Lidipi(k) + > wi(k) (7

i€lan i€lon
Lo(ur) = Y (ui(k) — wi(k — 1)) ()
i€ 1on
L (ok) = ) o ©)

i€lon
where, x is the state vector at time step k; uy is the control
action vector at time step k; oy is the penalty factor vector at
time step k, which can be calculated as:
wz(k) — Wmax S J’L(k)
On the other hand, two modifications are applied to reduce
the complexity of METANET model. Firstly, the highly non-

linear Eq. (4) is approximated by the piecewise approximation
(PWA) method as:

Vowa (pi(k)) = {

11 € Ion (10)

a1pi(k) + 1,0 < pi(k) < pmia
anl(k> + /827pmid < pz(k) S Pmax
(11)

where, pniq represents a parameter generated in approxima-
tion, the coefficients a1, a, B and B2 can be generated in
approximation. Then, a binary variable d;(k) is introduced to
describe the logical conditions, defined as:

The implication of binary variable J;(k) can be modeled by
the following linear constraints:

{ pi(k) = pmia < par(1 —6i(k))
pi(k) = pmia > € + (pm — €)0i(k)
where, ¢ is a small tolerance, typically the machine precision;
PM = Pmax — Pmid; Pm = —Pmid- With the binary variable
d:(k), Eq. (11) can be transformed to a simpler form:
Vewa (pi(k)) = 6i(k)(arpi(k) + B1)
+ (1= 0i(k))(azpi(k) + B2)

(12)

13)

(14)
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Secondly, over a large region of the state-action space, the
min operator in eq. (5) will cause the gradient to be zero.
Then, the control action is adjusted from metering rate w;(k)
to on-ramp flow r;(k). According to Eq. (5), the following
constraints should be considered to make sure that the new
control action 7;(k) is feasible:

ri(k) < d;(k)+ Liq(vk)

ri(k) < C; 1€ Iy (15)
rilk) < Gl
Meanwhile, the cost term Eq. (8) is updated to:
ri(k) —ri(k — 1)\’
L = —_ - 16
r(rk) = ( G (16)

i€1lon

where, 7 is the on-ramp flow vector at time step k.

Considering the above adjustment, the optimization model
with METANET modelling for the MPC formulation is given
by:

MN, Np—1
min Z Lr(zjk,) + &R Z Lr(rj.j)k.)
Jj=1 j=0
. a7
+éw > Lw(oy,)
Jj=1
subject to:
Lolke = Tke (18)
Titrlke = S(@kes T ke Olke)s I = 05y MNp =1 (19)
g(xﬂkcarjc(j”kc?éﬂkcv O-jlkc) < Oa] = O’ ey MNP (20)

where, 0 is the binary variable vector at time step k; &g
and £y are the weight coefficients; the definition of j.(j)
entails that the control action is kept constant for a complete
control time step (including M simulation time steps), which
is defined as j.(j) = |j/M]. Once the above optimization
model is solved, the first optimal control action TSI %, 1s applied
from the simulation time step Mk, to (m + 1)K, — 1, as per
the receding horizon approach.

III. AHMPC wWITH RL-BASED POLICY LEARNING
A. RL-AHMPC framework

The framework of RL-AHMPC is shown in Fig. 1. The RL
agent learns the optimal horizon policy my by continuously
interacting with the environment. In addition, the environment
consists of a plant and an MPC controller. At each time step,
the RL agent sends a horizon to the environment based on the
current system states Zx, which can be described as:

ay ~ mo(5k) (21)

The optimization problem with the updated horizon will be
solved at each step. Then, the plant moves to the next time step
based on the optimal control sequence in the MPC framework.
The RL agent observes the system states and reward signals,
then updates 6.

The complete RL-AHMPC algorithm is shown in Algorithm
1. The RL agent interacts with the environment for £ number
of episodes. At each episode, the MPC controller calculates
the optimal control sequence U,p¢, and control action uy is
obtained based on U, to update system dynamics. In addi-
tion, the policy parameter 6 is updated using observed states,
reward and action {8y, aj, 7, Sp4+1}. After each episode, the
environment is reset for the next episode. When finishing E
number of episodes, the algorithm outputs the adaptive horizon
policy .

Algorithm 1 RL-AHMPC algorithm

Input: £, K, MPC controller
Output: 7y

1: Initialize 6

2: for episode =0 to £ — 1 do
3 Initialize 31, Ugpt

4: for k=0to K — 1 do
5

6

Select horizon ay, ~ mo(8x)
Uopt (k) < Solving the optimization problem with
horizon aj in the MPC framework

7: Uk < Uopt(l)

8: Tk, Sp4+1 < Simulate system dynamics using uy,
9: Update 0 based on {8, ar, 7, Sk+1}

10: k<—k+1

11: end for

12: end for

B. RL algorithm

In this paper, Q-learning is investigated to update the policy
in the RL agent. Q-learning is a model-free method that works
well on discrete action and state spaces. In the training process,
the action, state and reward of Q-learning are updated at every
time step, and are defined as follows.

Action ai: The action space in Q-learning refers to the
set of all possible actions that the agent can take in a given
state of the environment. For the focused problem, the action
represents the adaptive horizon.

State 5;: The state space in Q-learning refers to the set
of all possible states that the environment can be in. For the
focused problem, the state space is defined as {p,w}, where
p is the observed traffic density and w is the observed queue
length.

Reward 7;: In Q-learning, the agent receives a reward
signal from the environment after taking an action. For the
focused problem, the reward is defined as:

a 1 1 1

Ly  &rLr  &wlw

where, the first three elements measure the closed-loop control
performance corresponding to the MPC controller and the
last element encourages optimal prediction horizons to reduce
online computation.

The Q-learning algorithm updates its Q-values Q(3g, ay)
based on the Bellman equation, which is a recursive equation

Tk — &alp (22)
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that expresses the value of a state-action pair in terms of the
immediate reward and the estimated value of the next state.
The policy 7y in the algorithm 1 specifically refers to the Q-
values Q(8k, dx) in Q-learning algorithm. The update equation
for Q-learning is given by:

Q(3k, ax) < Q(5k, 51)

+ ¢ |7k + ymax Q(8k+1, rt1) — Q(8k, ak)
AR41
(23)

IV. NUMERICAL CASE STUDY
A. Settings

A simple highway network with three segments (see Fig.
2) is considered in numerical case studies, and each segment
with 1 km length consists of two lanes, L; = 1 km, \; = 2.
Segment 1 is supplied by the uncontrolled mainstream original
demand dy, and is characterized by a capacity of 3500 vel/h,
Co = 3500 vel/h. Segment 3 is additionally supplied by the
uncontrolled on-ramp demand d3, and is characterized by a ca-
pacity of 2000 vel/h, C3 = 2000 vel/h. The density p,4 is used
to simulate downstream congestion. The network parameters
as found in [15] are used: T'=10s, 7 = 18 s, v = 60 km2/h,
k = 40 vel/km/lane, p = 0.0122, ppax = 180 vel/km/lane,
Perit = 33.5 vel/lkm/lane, vgee = 102 km/h, o = 1.867. The
parameters in the MPC framework are used: M =6, £ = 1,
¢r =1, (g = 1, wyax = 50 vel. The parameters in the PWA
function are used: pmig = 75.98 vel/km/lane, oy = —1.3,
as = —0.031, gy = 102, B2 = 5.58. The parameters in
the Q-learning algorithm are used: £ = 500, K = 1000,
& =1, o = 0.1, v = 0.99. The action space is defined as
{1,2,3,4,5,6}, which means that the prediction horizon is
adjusted between 1 and 6. Specially, the state space {p,w} is
definded as:

p = |p2(k)/10] (24)
W = { lws(k)/10], if |ws(k)/10] <9 25)
9, else
d,—1—> P
segment | segment 2 segment 3
d3

Fig. 2: Structure of the three-segment highway network

B. Simulation results and analysis

To validate the effectiveness of the proposed RL-AHMPC
method, it is compared with the no control (NC) method
and the traditional MPC methods with different prediction
horizons. The traffic densities and queue lengths for the NC
method are shown in Fig. 3. The traffic densities, queue lengths
and dynamic prediction horizons for the RL-AHMPC method
are shown in Fig. 4. And, the performances of different control
methods are shown in Table II. In Fig. 3 and 4, the traffic

density changes in three segments (s-1, s-2, s-3) and the
queue length connected to segment 1 and 3 (w-1, w-3) are
described. Meanwhile, the total travel times (TTT) of different
control methods are compared in Table II, which can be
calculated based on the Eq. (7). The total cost means the sum
of all objective costs in Eq. (17). The total computation time
(TCT) means the computational cost of the MPC controller
with different prediction horizon among the whole simulation
process.

TABLE II: Performance comparison between different meth-
ods

Type of MPC TTT [h] Total cost TCT [s]
NC 643.97 20190.42 /
MPC-1 615.05 18094.90 30.40
MPC-2 607.09 16613.48 47.51
MPC-3 600.43 15166.97 75.53
MPC-4 596.03 14192.13 105.20
MPC-5 598.20 15056.40 125.32
RL-AHMPC 613.84 17913.17 39.84
> 100 — sl
7

IS

()

LS

=

&=

£

T T
600 800

T
400

1000
time step
200
— w-1
=
o w-3
8
— 100 1
o
=
Q
E]
i / \
O h T T T T
0 200 400 600 800 1000
time step

Fig. 3: Results for NC method

As shown in Table II, the MPC methods can effectively
reduce the TTT and total cost. By applying the MPC-5,
the TTT and total cost can be reduced by around 7.11%
and 25.43% respectively in comparison to the NC method.
Meanwhile, by applying the AHMPC, the TTT and total cost
can be reduced by around 7.11% and 25.43% respectively in
comparison to the NC method.4.68% and 11.28% respectively
in comparison to the NC method. More specifically, as shown
in Fig. 3 and 4, there are relatively large differences in the
traffic details and queue lengths due to the application of MPC.
In the RL-AHMPC method, the queue length is kept at a lower
level compared to the NC method.

A comparison of the different MPC methods shows that
there are some differences in performance due to the different
prediction horizons. As the prediction horizon increases from
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Fig. 4: Results for RL-AHMPC method

1 to 5, the computation time increases from 30.40 s to 125.32
s. The longer the prediction horizon in the MPC method, the
more computation time is required. On the other hand, the
MPC method with a prediction horizon of 4 (MPC-4) shows
the best performance in terms of improving traffic efficiency.
This suggests that it is not the case that the larger the prediction
horizon, the more effective the MPC method is. In the RL-
AHMPC method, the prediction horizon is adjusted based on
the Q-values considering the system states. As shown in Fig.
4, when the traffic density is low, the prediction horizon is kept
at 2; when the traffic density is high, the prediction horizon is
kept at 1. Thanks to the adaptive prediction horizon, the RL-
AHMPC method can effectively improve the traffic efficiency
and keep the computational cost at a low level.

V. CONCLUSION

This paper presents a novel learning and model-based
approach to the local ramp metering problem on highways,
which combines MPC and RL. By leveraging the RL agent to
adjust the prediction horizon based on observed states, the
optimization problem in the MPC framework is optimized
with a dynamic prediction horizon to improve the closed-
loop performance while balancing the computational cost.
The results show that the proposed RL-AHMPC method can
significantly improve traffic efficiency, thanks to the optimal
control sequence of the MPC controller and the intelligent

horizon of the RL agent. Future work directions include: 1) the
use of different RL algorithms to capture the adaptive predic-
tion horizon; 2) the application of the proposed RL-AHMPC
framework to different highway traffic control strategies and
larger scale highway networks.
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